martes, 29 de noviembre de 2016

Hello Pipioluu!!!

Last art class, was abaut maths (HORROR!!!) abaut impossible figures, it strange figures have a trick to do:

(Escher two)

-All the lines have to be 30º. It's more easy that you think. We have right triangle and a set square:
    (Right triangle)     (Set square)



How to make paralel lines


It's in catalan but I'm going to translate:

1. Fit the right triangle to the top.

2. Put the set square next to the right triangle, like in the photography.

3. Grab the right triangle and muve up or down the set square

Good week
Sunni






LA ESPONJA DE MENGER



Alguien había escucha alguna vez hablar sobre la esponja de Menger?

La esponja de Menger es un fractal en forma de cuba.Se descrivió por primera vez en el 1926, por Karl Menger mientra exploraba el concepto de dimensió topológica2
La esponja tiene una superficie infinita y al mismo tiempo encierra su volumen es cero.

La construcción de la esponja de Menger se define de forma recursiva:

1-Comenzamos con un cubo.(primera imagen).
2-Dividimos cada cara del cubo en 9 cuadrados. Este se subdivide en 27 cuadrados más pequeños, como le sucede al cubo de Rubik.
3-Eliminamos los cubos centrales de cada cara (6) y el cubo central (1), dejando solamente 20 cubos (segunda imagen).
4-Repetimos el prceso 1, 2 y 3 para uno cada uno de los 20 cubos menores.

Y este es uno de los muchos fracteles que se conocen hoy en día (más adelante os explicaré otros fracteales).



Albert C. 



Esponja de Menger, Primeros cuatro niveles de la construcción.
Hello  how are you today I gona show you how to do a root.





Adding radicals should be similar, that is, they must have the same index and the same radicand.

Coefficients join and leave the same index and the same radicand.




When there are similar factors to be drawn before the radicand because they are:

example

Marcel Rovira

lunes, 28 de noviembre de 2016

Hi I want to show you a little part of what is tne number pi Π

Π (pi) is the relationship between the length of a circumference and its diameter, in Euclidean geometry. It is an irrational number and one of the most important mathematical constants. It is often used in mathematics, physics and engineering. The numerical value of π, truncated to its first numbers, is as follows:

 3,14159265358979323846
The value of π has been obtained with various approximations throughout history, being one of the mathematical constants that appears more in the equations of physics, together with the number e. It should be noted that the quotient between the length of any circumference and that of its diameter is not constant in non-Euclidean geometries.



marcel rovira

martes, 22 de noviembre de 2016

Encara que no ho sembli molts vidiojocs de matar o coches es necessita fer algunes equacions. Ex.

Un enemic esta 62m. , en el teu franco pots marcar tres distàncies:
-50m.
-150m.
-300m.

Desprè necessites calcular la velocitat que va aquell home (x) i si has fet l'equaci bé haries d'haver matat
l'enemic.

En el cas d'un coche seria així:
El teu coche va a (x) Km./h la curva esta a 50m.  cap a l'eaquerra i fa un vent de 3Km./h dirrccio oest. A quina velocitat a d'enar el coche per agafar la curva i no estrellarse?
Ara l'únic que heu de fer es una equacio molt simple.
Hi guys today I will sow you a successio of numbers  
I will tell you what is andt were can you find it

The Successió Fibonacci invented Pissano Leonardo.

It is an infinite number Successió natural works, as follows:
1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , 233 , 377 , 610 , 987 , 1597


What we do is, we add one to one, that two, we add to this the second one, which would give 3 to this we add the second third, which gives 5.

In conclusion the only thing we are doing is adding a number before the number is, add the previous number, for example:

4+3=7      7+4=11 
Resultado de imagen Succession of Fibonacci immatge this can be seen as the conch, is becoming increasingly larger, since it will add more and more numbers.



In the laditori in bcn it has the soccecion of fibonacci in her roof but it’s with squares

look like the succecion of fibonacci  












Marcel

Hello Pipiolu!

It's me again :)
Do you know what is a MONOMI? And a POLINOMI?


A MONOMI it's an algebraic expression that have: Numeral part and Literal part. It have to has an index that has to be positive, not negative. If it have negative index, itsn't a MONOMI.

·Example of MONOMI: 21x2

And a POLINOMI are more than two MONOMIS (BINOMI).

·Example of POLINOMI:  5x6+11y4+38xy7




Now I lend you other mathematic photo:

ALMOST NINETY DEGREES

This summer the weather was hot. So we can see that in Barcelona (We can know that it's Barcelona because it is "La Sagrada Familia"), ALMOST NINETY DEGREES!!! How many agrees do you think the girl do? 









Sunni

lunes, 21 de noviembre de 2016

Hello! Pipiolu :D

Yesterday I was claning my mobile phone photos, And I found some Mathematics photos (That  are in our instagram too: https://www.instagram.com/perffmaths/?hl=en memes about maths, some mathematics photos...) :

BLACK AND WHITE PARALEL HORSES



We can see that maths are every where, here it's one of millions 
examples. We can see two horses, one black (It's me ;) ) and one  white
(My friend). Colors are opposed and it are paralel. And it's so
curiouse because the paralels never Touch, and here we are touching
our hands. CONCLUSION: We're paralel, oppositte colors and touching.

So funny!!
Happy Monday!
Sunni



martes, 15 de noviembre de 2016

Hi guys today i will show to you how a river can blow your mind.



After passing through a point A, a river,
It is divided into two branches. To the right branch,
Following the direction of flow is diverted a third of the
flow, and the rest is diverted by the branch of the left. River
below, this branch overlays, also divided into two, one of
which it absorbs three quarters of the flow
He arrives, and the other, the rest. What proporci'o of the flow
through point A finally comes through point B?

If you whant to resolve the problem you have to cinck clearly
Firts you have to res of A             -  then you only have to do this












Marcel rovira

lunes, 14 de noviembre de 2016

Sabieu que és....

1-MONOMIS:És una expressió algebraica d'un sol terme. No negatius.

2-POLINOMIS:Són expresions algebraiques amb diversos monimis.
Ex:

4x2monomi.
4x2+5x6=9x8→polinomi.


Després està la PROPIETAT DISTRIVUTIVA que és una forma de multiplicar incognites.

4 (6x+x)=24x+4x=28x

En el cas de tenir un nombre més gran, s'hauria de ordenar amb el número amb el grau més gran al principi i el més petit al final.

4 (5x2+2x3-5x7)=20x2+8x3-20x3
=20x7-8x3+20x2
En matemàtiques lo normal és poder fer sumes amb qualsevol número exceptr le arrerels. Amb les arrels sol podem sumar dues xifres iguals o que una de elles suigui 0. Quan els núneros són diferents s'han de descomposar fins que obtens dos números iguals.


domingo, 13 de noviembre de 2016

Hello pipiolu!

Yesterday we were doing conceptual maps, and we were speaking that there are a lot
of maps:
-Hierarchical
- Panoramic
-Spider
-Organizatin chart
-Etc...

We arrive at the conclusion that SPIDER maps are the bests. With thosse maps you can connect all the ideas, and if you can relate a lot or all, you can be satisfet becouse you know what is abaut the topic. It's easy, if you watch Photo 1 you can see a directory of subway in Mexico. A lot of lines are connectate, diferent stations are diferents ideas of the topic that we are relacionating, and people can move easier so the ideas are easier to understand.


(Photo 1)

I hope that your week will be nice :*
Sunni

martes, 8 de noviembre de 2016

MEME
Image result for memes matematicas
Hi today we will won't tell you a problem, it’s a image for you to think and explore and reflect about you are, it has a little bit of math’s because our teacher tell us to make a mental map and all the class did a recap because it’s easy for us to understand, he tell us that a mental map as connections like this.
And it help a lot for study an then he show to us two pictures 
If you have a moment to look them good you can see that are very similar and we don’t know or yes,

The teacher tell us that the map mental is the best because it have a lot of  connections and it means that all the thing are made for a reason  and it means that you know a lot of that subject. And for this reason I recommend you to do ha  mental map if you want to study. 








Marcel 
A classe de mates vam parlar de les diagonals en les figures geomètriques.  Sabieu que no cal dibuixar totes les diagonals per saberu. Jo posaré 2 exemples:
En el cas d'un hexagon l'únic que has de fer és contar els vertexs multiplicarlos per 3 i dividirlo entre 2.

1-
6·3
2
I el resultat és 8.

En el cas d'un pentagon es feria el mateix:
2-
5·2
2
I el resultat és 5.

Us proposare un proble senzill: Sabrieu dirme quantes diagonals té una figura de 1000 costats ( sense dibuixar les diagonals)?
A classe de metemàtiques vam parlar de com podriem estudiar per els dies abans del exàmen, el nostre professor ens va dir que un mapa conceptual o mantal és una bona forma de fer-ho.
És agafar el teus apunts i posar-los de forma esquemàtica i resumida de forma que tota la informació necessaria quedi plasmada en l'esquema. Al ser de mates pots posar-hi operacion, anegdotes, frases... el que més et convingui.
Image result for mapa mental mates

domingo, 6 de noviembre de 2016

NUMBERS

Hi People!
Today i want to speak about the numbers. Every year in class, at the beginning of the course we have always spoken about natural numbers, integers, rational, etc... How many numbers did we know until now? Well we were debate how many there are. Our teacher said that we had to do a search. And finally with all my classemades found SEVEN different tipes of numbers:

-Naturals (1,2,3,4,5... Not negative and not decimal...)

-Integer (Positives, negative and 0)

-Racionals (Proporcional numbers)

-Decimal (Comas)

-Irracionals (We can't expresse that in fractions)

-Reals

-Complex (imaginaries___ i2=-i)



He tell us that numbers are like a russian dols. First we have N(Natural numbers), N numbers are the most simple. Then we have Z(Integer numbers), those numbers have natural numbers inside. The same with the Q(Racional numbers), N and Z are inside of Q. And R(Real numbers) have inside N, Z and Q. Finally we have C(Complex numbers) C are numbers to resolve things imposible.

There ia a diagram of that numbers:


Sunni

martes, 1 de noviembre de 2016

Hi People!

Last week in class we were speaking about fractals, an amazing and interessant things in our world.
Nature isn't symmetrical, there aren't squares, polygons or spheres. They are irregular forms, but frequently nature follow that strange forms called FRACTALS. That are a lot of examples in our surrounding: In "Brécol romanesco"(Photo 1) or in a fern (Photo2). Or even more close, in our body, in the branching of our lung. (Photo3)
There are different metoth like Sierpiński triangle (Photo 4) or Menger sponge (Photo 5)

(Photo 1)

(Photo 2)

(Photo 3)

(Photo 4)

(Photo 5)


Sunni